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Abstract

An intuitive approach to the glueball using the flux-tube ring solution in the

dual Ginzburg-Landau theory is presented. The description of the flux-tube

ring as the relativistic closed string with the effective string tension enables us

to write the hamiltonian of the flux-tube ring using the Nambu-Goto action.

Analyzing the Schrödinger equation, we discuss the mass spectrum and the

wave function of the glueball. The lowest glueball state is found to have the

mass MG ∼ 1.6 GeV and the size RG ∼ 0.5 fm.
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I. INTRODUCTION

The existence of glueball states is naively expected in terms of the gluon self-coupling in QCD[1].

Recent progress of lattice QCD simulations predicts the masses of glueballs M(0++) = 1.50 ∼ 1.75

GeV, M(2++) = 2.15 ∼ 2.45 GeV [2–6]. Experimentally, there are some candidates; f0(1500)

and f0(1710) for the scalar glueball, fJ(2220) (J=2 or 4), f2(2300) and f2(2340) for the tensor

glueball[7]. However, the abundance of q-q̄ meson states in the 1 ∼ 3 GeV region and the possibility

of the quarkonium-glueball mixing states still make it difficult to identify the glueball states[8]. To

date, no glueball state has been firmly discovered yet. More studies for the glueballs from many

directions are necessary to specify the glueball states.

In this paper, we present an analytic and very intuitive approach to the glueball using the

dual Ginzburg-Landau (DGL) theory, an effective theory of the nonperturbative QCD. The DGL

theory is constructed from QCD by performing the ’t Hooft abelian projection[9] with the two

hypotheses, abelian dominance and monopole condensation[10]. Abelian projection reduces QCD

into the U(1)2 abelian gauge theory including monopoles, and recent studies of the lattice QCD in

the maximally abelian (MA) gauge give numerical evidences of QCD-monopole condensation[11, 12]

and abelian dominance[13, 14] for the nonperturbative phenomena such as confinement[15, 16],

chiral symmetry breaking[17, 18]. In the DGL theory, the QCD-vacuum is described as the dual

version of the superconductor and the color confinement is realized by the formation of the color-

electric flux-tube through the dual Meissner effect[19–22]. The flux-tube has a constant energy per

unit length, the string tension, which characterizes the strength of the color confinement as the

slope of the linear potential between the color charges. The flux-tube solution in the DGL theory

appears as the topological excitation as the relevant collective mode in the QCD-vacuum, and this

provides intuitive pictures of the hadrons in terms of the string-like structure of the color-electric

flux. While the hadrons including the valence quarks correspond to an open flux-tube excitation

with terminals, the glueball can be regarded as the flux-tube without end, the “flux-tube ring”

excitation[23], in the flux-tube picture[24]. This simple picture is expected to provide the further

understanding of the glueball.
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In this paper, we consider the simplest ring solution that the ends of the flux-tube meet each

other to form a circle. We study then the profiles of the color-electric field and the monopole field

with the DGL theory. We calculate also the “effective string tension”, which is the string tension

of the flux-tube forming a ring as a function of the ring radius R. The flux-tube ring solution

in the DGL theory itself is unstable and prefers to shrink, since it does not contain any kinetic

term for the ring motion. From the quantum mechanical point of view, such a collapse is to be

forbidden by the uncertainty principle. Let us imagine the hydrogen atom, where the stable ground

state is determined by the energy balance between the kinetic term of the electron p2/2me and

the Coulomb potential term −e2/r with the uncertainty relation p · r ≥ 1. Similarly, it would

be necessary to introduce the kinetic term of the ring, and take the quantum effect into account.

However, it is a difficult problem since we have no guiding principle to determine the kinetic term

of the flux-tube. Therefore, in this paper, we introduce the kinetic term based on the string-like

description of the flux-tube by using the Nambu-Goto (NG) action in the string theory[25] and we

use the principle that the string action is proportional to the world surface swept over the string

motion. In this scheme, the flux-tube ring is regarded as the relativistic closed string with the

effective string tension, which is calculated based on the DGL theory.

In section II, we investigate the single flux-tube solution in the DGL theory and consider the

essence of the flux-tube. The DGL parameters are determined so as to reproduce the string tension

σ ≃ 1 GeV/fm extracted from the Regge slope of the hadrons[26].

In section III, we study the flux-tube ring solution as the glueball excitation. We investigate

the profiles and the effective string tension of the flux-tube ring, and then, we combine the DGL

theory with the string theory in order to introduce the kinetic term and write the hamiltonian

of the flux-tube ring. Finally, we estimate the mass and the size of the glueball by solving the

Schrödinger equation.

Section IV is devoted to the summary of the present study and the discussion.
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II. SINGLE FLUX-TUBE SOLUTION IN THE DGL THEORY

In this section, we consider the topological solution related to the q-q̄ system in the dual

Ginzburg-Landau (DGL) theory within the quenched level. The system is described by the DGL

lagrangian[19, 20],

LDGL = −1

4

(

∂µ
~Bν − ∂ν

~Bµ − 1

n · ∂ εµναβnα~jβ
)2

+
3
∑

α=1

[

∣

∣

∣

(

∂µ + ig~ǫα· ~Bµ

)

χα

∣

∣

∣

2
− λ

(

|χα|2 − v2
)2
]

,

(2.1)

where ~Bµ and χα denote the dual gauge field with two components (B3
µ, B8

µ) and the complex scalar

monopole field, respectively. Here, ~ǫa is the root vector of SU(3) algebra, ~ǫ1 =
(

−1/2,
√

3/2
)

,~ǫ2 =
(

−1/2,−
√

3/2
)

,~ǫ3 = (1, 0), and nµ denotes an arbitrary constant 4-vector, which corresponds to

the direction of the Dirac string. At the quenched level, the color sources are given as the c-number

current, and the heavy q-q̄ system provides

~jµ
α(x) ≡ ~Qαgµ0

[

δ3 (x − a) − δ3 (x − b)
]

, (2.2)

where ~Qα ≡ e~wα is the abelian color-electric charge of the quark. Here, a and b are position

vectors of the quark and the antiquark, respectively, and wα is the weight vector of SU(3) algebra,

~w1 =
(

1/2,
√

3/6
)

, ~w2 =
(

−1/2,
√

3/6
)

, ~w3 =
(

0,−1/
√

3
)

. The label α = 1, 2, 3 corresponds to

the color-electric charge, red(R), blue(B) and green(G). According to the Gauss law, one finds the

color-electric field and then the dual gauge field ~Bµ is proportional to the quark charge ~Qα[21, 22].

For instance, when we consider the R-R̄ system, the dual gauge field can be defined by using the

weight vector as ~Bµ ≡ ~w1B
R
µ . In this system, the DGL lagrangian (2.1) can be written as

L′

DGL = −1

3
· 1

4

(

∂µBR
ν − ∂νB

R
µ

)2
+ |∂µχ1|2 − λ

(

|χ1|2 − v2
)2

+

∣

∣

∣

∣

(

∂µ − 1

2
igBR

µ

)

χ2

∣

∣

∣

∣

2

− λ
(

|χ2|2 − v2
)2

+

∣

∣

∣

∣

(

∂µ +
1

2
igBR

µ

)

χ3

∣

∣

∣

∣

2

− λ
(

|χ3|2 − v2
)2

, (2.3)

where we use the relation, ~ǫα · ~Bµ = ~ǫα · ~w1B
R
µ = 1

2 ( 0,−1, 1 ) BR
µ . By considering the constraint

condition of the phase of the monopole field
∑3

α=1 arg χα=0[19, 20], we can write the monopole

field, in this case, as χ1 = v, χ2 = χR∗

, χ3 = χR. The DGL lagrangian (2.3) is then given by
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L′

DGL = −1

3
· 1

4

(

∂µBR
ν − ∂νBR

µ

)2

+2

∣

∣

∣

∣

(

∂µ +
1

2
igBR

µ

)

χR

∣

∣

∣

∣

2

− 2λ

(

∣

∣

∣χR
∣

∣

∣

2
− v2

)2

. (2.4)

With the redefinitions of the fields and the parameters,

BR
µ ≡

√
3Bµ, χR ≡ χ, g ≡ 2√

3
ĝ, λ ≡ 2λ̂, v ≡ 1√

2
v̂, (2.5)

we get the final expression for the R-R̄ system,

L′

DGL = −1

4
(∂µBν − ∂νBµ)2 + |(∂µ + iĝBµ)χ|2 − λ̂

(

|χ|2 − v̂2
)2

. (2.6)

For the other two color-singlet cases such as the B-B̄ and the G-Ḡ system, one obtains the same

expression owing to the Weyl symmetry among three color charges, R, B and G. The lagrangian

(2.6) has the U(1) gauge symmetry and its form coincides with the Ginzburg-Landau theory for

superconductivity. This type of lagrangian has the flux-tube solution such as the Abrikosov vor-

tex[27].

To see this solution, we consider the field equations,

(∂µ + iĝBµ)2χ = 2λ̂χ(v̂2 − χ∗χ), (2.7)

∂ν∗Fµν ≡ kµ = −iĝ(χ∗∂µχ − χ∂µχ∗) + 2ĝ2Bµχ∗χ, (2.8)

∗Fµν ≡ ∂µBν − ∂νBµ, (2.9)

with the proper boundary conditions that quantize the color-electric flux. The flux is given by

Φ ≡
∫

∗Fµνdσµν =

∮

Bµ(x)dxµ, (2.10)

where σµν is a two-dimensional surface element in the Minkowski space. By the polar decomposition

of the monopole field using two scalar variables, φ and f as χ(x) = φ(x)eif(x), we obtain from

Eq.(2.8)

Bµ =
1

2ĝ2

kµ

φ2
− 1

ĝ
∂µf. (2.11)

5



We substitute this expression into (2.10) and integrate out over a large closed loop where the

current kµ is vanished. Thus we get

Φ = −1

ĝ

∮

∂µf(x)dxµ. (2.12)

Since the only requirement on the phase f(x) is that χ(x) should be a single valued, the line integral

(2.12) does not necessarily vanish. It means that f(x) can be varied by 2πn (n=integer), therefore

Φ = −2πn

ĝ
, (2.13)

and the flux is quantized as a result of this condition. Integer n is regarded as the winding number

of the flux-tube corresponding to the topological charge.

Let us consider the single flux-tube solution with translational invariance (it also has cylindrical

symmetry) along the z-axis, which is expected to appear in the q-q̄ system. In such a system, the

dual gauge field and the monopole field can be written using the radial coordinate r as

B = B(r)eθ =
B̃(r)

r
eθ,

φ = φ(r), (2.14)

and the phase is f = nθ, where θ is the azimuth around the z-axis. The differential of the phase is

∇f = (n/r) eθ and its integration over a closed loop leads the flux quantization condition (2.13).

The color-electric field is defined by the rotation of the dual gauge field,

E ≡ ∇× B =
1

r

dB̃(r)

dr
ez ≡ Ez(r)ez, (2.15)

where ez is a unit vector along the z-axis. The field equations (2.7) and (2.8) are given by,

d2φ

dr2
+

1

r

dφ

dr
−
(

n − ĝB̃

r

)2

φ − 2λ̂φ (φ2 − v̂2) = 0, (2.16)

d2B̃

dr2
− 1

r

dB̃

dr
+ 2ĝ (n − ĝB̃)φ2 = 0, (2.17)

and the energy of the flux-tube per unit length 1/v̂ along the z-axis is obtained as

En =
2π

v̂

∫

∞

0
rdr





1

2

(

1

r

dB̃

dr

)2

+

(

dφ

dr

)2

+

(

n − ĝB̃

r

)2

φ2 + λ̂(φ2 − v̂2)2



 . (2.18)
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Since the flux-tube solution should give a finite energy, one finds the boundary conditions,

B̃(r) = 0, φ(r) = 0 as r → 0,

B̃(r) =
n

ĝ
, φ(r) = v̂ as r → ∞. (2.19)

The string tension can be defined by using the expression of the energy (2.18) as

σ ≡ En=1
∫ 1/v̂
0 dz

= En=1v̂. (2.20)

In Fig.1, we show the numerical solution of the flux-tube, the profiles of the color-electric field

Ez(r) and the monopole field φ(r) with the winding number n=1, where the parameters are fixed

as

ĝ = 2.6, λ̂ = 33, v̂ = 0.14 GeV, (2.21)

or equivalently, g = 2.9, e = 4π/g = 4.3, λ = 66, v = 0.098 GeV (see (2.5)). These parameters

reproduce the string tension σ = 1.0 GeV/fm and two characteristic mass scales which are presented

by mχ ≡ 2
√

λ̂v̂ and mB ≡
√

2ĝv̂ as mχ = 1.6 GeV and mB = 0.5 GeV, respectively. The

mχ denotes the monopole mass, which is the threshold energy to excite the monopole in the

QCD-vacuum corresponding to the Bogoliubov particle so-called “Bogoliubon” in the ordinary

superconductor[28]. If such excitations dominate, the phase transition is expected to occur and

this value mχ is regarded as the ultra-violet cutoff of the DGL theory. The mB is the dual gauge

mass, which determines the magnitude of the dual Meissner effect. The value 0.5 GeV is supported

by the recent calculation based on the lattice QCD using the dual formalism[12]. These inverse

masses m−1
χ = 0.12 fm and m−1

B = 0.39 fm are regarded as the coherent length of the monopole field

and the penetration depth of the color-electric field, respectively. The ratio of these two lengths

gives the Ginzburg-Landau (GL) parameter,

κ̃ ≡ m−1
B

m−1
χ

=

√

2λ̂

ĝ
. (2.22)

The GL-parameter plays an important role to define the vacuum properties, where κ̃ < 1 describes

the type-I vacuum and κ̃ > 1 is the type-II vacuum. The parameters (2.21) lead the GL-parameter

as κ̃ = 3.0 > 1, which indicates that the QCD-vacuum belongs to the type-II vacuum[29].
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In such a type-II vacuum, one can treat the field equations (2.16) and (2.17) analytically within

the mean field approximation φ ∼ v̂ with the cutoff mB = mB θ(r−m−1
χ ). The cutoff is necessary in

order to avoid the unphysical divergence at the core of the flux-tube. The mean field approximation

leads the dual London equation from Eq.(2.17),

d2B̃

dr2
− 1

r

dB̃

dr
+ 2ĝ(n − ĝB̃)v̂2 = 0, (2.23)

and the replacements r ≡ m−1
B ρ and B̃(ρ) ≡ n/ĝ − ρK(ρ) give

d2K

dρ2
+

1

ρ

dK

dρ
−
(

1 +
1

ρ2

)

K = 0. (2.24)

We know this solution is described by the first order modified Bessel function K1(ρ), which asymp-

totically behaves as K1(ρ) ∼
√

π
2ρe−ρ. Thus one obtains the profiles of the dual gauge field and

the color-electric field,

B̃(ρ) ∼ n

ĝ
− ρ

√

π

2ρ
e−ρ, Ez(ρ) ∼

√

π

2ρ
e−ρ. (2.25)

The color-electric field is excluded from the vacuum and hence confined inside the region ρ < 1

(r < m−1
B ), which means the vortex-type, i.e. the flux-tube configuration. Of course, these

expressions are valid for the outside region of the cutoff r > m−1
χ . If we want to get the whole

region of the profiles with the arbitrary parameters, we must resort to the numerical calculations as

shown in Fig.1. In any case, the DGL theory explains the formation of the flux-tube in the QCD-

vacuum, which provides the linear confinement potential between the quark and the antiquark.

Here we shall discuss some important features of the flux-tube. As we can confirm, the phase

of the monopole field f = nθ leads the differential form of the flux quantization condition,

∇×∇f = 2πnδ(x)δ(y)ez, (2.26)

where the delta functions characterize the center of the flux-tube. Thus, an essential point for the

formation of the flux-tube is that the phase of the monopole field becomes singular at the center

of the color-electric flux. That is to say, if we want to obtain the flux-tube solution, all we have

to do is to impose the singular structure on the phase. We also find that the setting of the phase

provides the boundary condition of the dual gauge field uniquely as is presented in Eq.(2.11) that

the dual gauge field should behave as Bµ → −1
ĝ∂µf at the current kµ ≃ 0.
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III. GLUEBALL AS THE FLUX-TUBE RING SOLUTION

In this section, we consider the flux-tube ring solution that the ends of the flux-tube meet each

other to form a circle with the radius R as shown in Fig.2. The singular structure on the phase of

the monopole field is characterized by the rotational invariance along the z-axis,

∇×∇f = 2πn δ(r − R) δ(z)eθ, (3.1)

where n is the winding number of the flux-tube composing the ring. The fields can be written as

B = Br(r, z)er + Bz(r, z)ez,

φ = φ(r, z), (3.2)

and the phase is determined by Eq.(3.1) as f = −n tan−1 (z/(r − R)). The factor minus comes

from the use of the cylindrical coordinate. The field equations are obtained by substituting these

expressions into Eqs.(2.7) and (2.8),

∂2φ

∂r2
+

∂2φ

∂z2
+

1

r

∂φ

∂r
− ĝ2

(

B′

r
2
+ B′

z
2
)

φ − 2λ̂ φ (φ2 − v̂2) = 0, (3.3)

∂2Bz

∂z∂r
− ∂2Br

∂z2
+ 2ĝ2B′

rφ
2 = 0, (3.4)

∂2Br

∂r∂z
− ∂2Bz

∂r2
+

1

r

(

∂Br

∂z
− ∂Bz

∂r

)

+ 2ĝ2B′

zφ
2 = 0, (3.5)

with

B′

r ≡ Br −
∂f

∂r
= Br − n

z

(r − R)2 + z2
, (3.6)

B′

z ≡ Bz −
∂f

∂z
= Bz + n

r − R

(r − R)2 + z2
. (3.7)

The boundary conditions are given by

φ(r, z) = 0 as (r, z) → (R, 0),

B′

r(r, z) = 0, B′

z(r, z) = 0 and φ(r, z) = v̂ as
√

(r − R)2 + z2 → ∞. (3.8)
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For r → 0, the color-electric field is required to disappear due to the rotational symmetry around

the z-axis.

In Figs. 3 and 4, we show the numerical solutions of the profiles of the color-electric field and the

monopole field as a function of the ring radius R. These profiles show the tendencies of shrinking

of the color-electric field and the monopole field as the ring radius R is reduced. Accordingly, we

also obtain the effective string tension σeff(R) as a function of the ring radius as shown in Fig.5.

σeff(R) is defined by

E(R) = 2πRσeff (R), (3.9)

where E(R) is the energy of the flux-tube ring,

E(R)=2π

∫

∞

0
rdr

∫

∞

−∞

dz

[

1

2

(

∂Br

∂z
− ∂Bz

∂r

)2

+

(

∂φ

∂r

)2

+

(

∂φ

∂z

)2

+ĝ2(B′

r
2
+B′

z
2
)φ2+λ̂(φ2−v̂2)2

]

. (3.10)

We find the string tension is effectively reduced with decreasing the ring radius R, which is con-

sidered to be caused by the reduction of the color-electric field. The energy E(R) decreases as the

ring radius R is reduced. That is to say, the flux-tube ring solution in the DGL theory itself is

unstable and prefers to shrink, since it does not contain any kinetic term for the ring motion.

From the quantum mechanical point of view, such a collapse is to be forbidden by the uncer-

tainty principle like the hydrogen atom, where the kinetic term of the electron plays an important

role for the stability of the atom. Hence, in order to get the stable ring solution for its motion, it

would be necessary to introduce the kinetic term of the ring. Since the flux-tube is characterized

by the string-like singular structure on the phase of the monopole field, it seems reasonable to

describe the flux-tube ring as the relativistic closed string with the effective string tension σeff(R)

by using the Nambu-Goto (NG) action. The description is quite simple. The NG action of the

relativistic closed string with the string tension Σ is written in general,

S =

∫ τF

τI

dτ

∫ 2π

0
dθ

[

−Σ
√

(ẊX ′)2 − (Ẋ)2(X ′)2
]

, (3.11)

where Xµ = Xµ(τ, θ) denotes the string world sheet, Ẋµ ≡ ∂Xµ/∂τ and Xµ′ ≡ ∂Xµ/∂θ.

We parameterize the ring as a circle with the radius R,

10



X1(τ, θ) = R(τ) cos θ, X2(τ, θ) = R(τ) sin θ, (3.12)

and choose the chronological gauge X0(τ, θ) ≡ τ . This parameterization satisfies the orthogonal

condition Ẋ · X ′ = 0. Thus, we obtain the action of the flux-tube ring,

Sring =

∫ τF

τI

dτ

∫ 2π

0
dθ

[

−σeff(R)R

√

1 − Ṙ2

]

, (3.13)

and the hamiltonian of the ring,

H(PR, R) =
√

P 2
R + {2πRσeff (R)}2, (3.14)

where PR is the canonical conjugate momentum of the coordinate R, defined by

PR ≡ 2πRσeff(R)
Ṙ

√

1 − Ṙ2
. (3.15)

If we put PR = 0 (Ṙ = 0), the hamiltonian provides the static energy (3.9).

Once the ring hamiltonian including the kinetic term is obtained, we can look for the glueball

states by solving the Schrödinger equation

[

− d2

dR2
+ {2πRσeff (R)}2

]

Φm(R) = Mm
2 Φm(R), (3.16)

with the boundary conditions,

Φm(R = 0) = 0, Φm(R = ∞) = 0. (3.17)

The boundary condition Φm(0)=0 is required in terms of the ring structure of the flux-tube since

the wave function is considered to characterize the configuration of the color-electric flux.

It is useful to consider the type-II limit where the effective string tension has a constant value;

σeff(R) ≈ σ (≃ 1.0 GeV/fm). In this case, the ring hamiltonian reduces into the harmonic-oscillator

in one dimension and we can easily obtain the analytic form of the wave function and the mass

spectrum,

Φm(R) ∝ Hm(
√

2πσR) exp(−πσR2), (3.18)

Mm =

√

4πσ

(

m +
1

2

)

, (3.19)
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where Hm(x) is Hermite polynomials, H0(x) = 1, H1(x) = x and so on. One finds the state

m = 1, 3, 5, · · · satisfy the boundary condition Φm(0)=0. Thus, we get

Φ1(R) = 27/2πσ3/2R exp(−πσR2), (3.20)

M1 =
√

6πσ = 4.34
√

σ = 1.93 GeV, (3.21)

for the lowest state of the flux-tube ring. The root mean square radius is obtained as

√

〈R1
2〉 ≡

∫

∞

0
dRΦ1R

2Φ1 =

√

3

4πσ
= 0.489

1√
σ

= 0.23 fm. (3.22)

Let us calculate the ground state of the m = 1 state for the κ̃ = 3.0 case. In this case, we should

resort to the variational method since the effective string tension is not a constant value and is given

as the numerical function of the radius R. We use the trial function Φ1(R, a) ∝ R exp(−aπσR2)

where a is the variational parameter determined by minimizing

M1(a) ≡
√

〈Φ1(R, a)|H(PR, R)2|Φ1(R, a)〉
〈Φ1(R, a)|Φ1(R, a)〉 , (3.23)

and we obtain M1(a = 0.82) = 1.6 GeV as shown in Fig.6, which is regarded as the lowest glueball

mass MG. As for the root mean square radius, a = 0.82 < 1 suggests that the ring radius becomes

broad compared with
√

3/4πσ for the type-II limit case by the factor 1/
√

a. Therefore, we estimate

the ring radius as 0.25 fm and the size of the glueball as RG = 0.25×2 = 0.5 fm (the ring diameter).

We find that this mass spectrum MG=1.6 GeV is almost consistent with the scalar glueball mass

that the lattice QCD predicts for the lowest state[2–6].

It is interesting to note that the expression (3.21) is very similar to the following form[30],

M(0++) = 3
√

2
√

σ ≃ 4.24
√

σ, (3.24)

which is naively derived by the procedure of the minimization of the energy of a bound state of

two massless gluons,

E = 2p +
9

4
σr − α

r
, (3.25)

where p is the gluon momentum and α the strong coupling constant. The color factor 9/4 is

given by the ratio of the SU(Nc) Casimir operators of the adjoint representation Nc and the
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fundamental representation (Nc
2 − 1)/2Nc for Nc=3. The uncertainty relation p · r ≥ 1 leads the

energy minimum E = 3
√

(2 − α)σ ≈ 3
√

2
√

σ at r = 2
√

2 − α/3
√

σ ≈ 2
√

2/3
√

σ = 0.943/
√

σ.

One may find that this glueball size 0.943/
√

σ is also consistent with two times of 0.489/
√

σ in

(3.22). These similarities seem to suggest a close relation between the flux-tube ring picture and

the phenomenological potential picture of the glueball.

IV. SUMMARY AND DISCUSSIONS

We have studied the flux-tube ring solution in the dual Ginzburg-Landau (DGL) theory as

the glueball excitation. The flux-tube solution in the DGL theory explains the color confinement

and also provides intuitive pictures of the hadrons in terms of the string-like structure of the

color-electric flux. The hadrons including the valence quarks topologically correspond to the open

flux-tube excitation with terminals. Thus, the glueball, which is considered as an object without

valence quarks, can be regarded as the flux-tube ring intuitively.

By considering the rotational invariant system along the z-axis as shown in Fig.2, we have

studied the profiles of the color-electric field and the monopole field as a function of the ring

radius. We have used the parameters which reproduce mB=0.5 GeV, mχ=1.6 GeV and the string

tension σ=1.0 GeV/fm. The GL-parameter is found to be κ̃=3.0, which suggests that the QCD-

vacuum belongs to the type-II vacuum. We have calculated the effective string tension σeff(R) as

a function of the ring radius. σeff(R) is defined by the relation E(R)=2πRσeff (R), where E(R) is

the energy of the ring with the radius R. We have found the profiles are reduced with decreasing

the ring radius R and accordingly the effective string tension is reduced. These results characterize

the size effect of the flux-tube, which is the difference between the flux-tube and the string.

In order to include the kinetic term of the ring, we have described the flux-tube ring as the

relativistic closed string with the effective string tension. Using the Nambu-Goto (NG) action, we

have parameterized the ring as a circle with the radius R and obtained the hamiltonian H(PR, R)=
√

P 2
R + {2πRσeff (R)}2, where PR is the canonical conjugate momentum of the coordinate R. If we

put PR = 0, the hamiltonian leads the static energy E(R). Analyzing the Schrödinger equation

13



H(PR, R)2Φ(R)=M2Φ(R) with the boundary condition Φ(R = 0)=Φ(R = ∞)=0, we have obtained

the eigenvalue MG =1.6 GeV for the ground state, which is considered as the lowest glueball mass.

The size of the glueball is estimated as RG =0.5 fm. The mass spectrum MG =1.6 GeV is almost

consistent with the scalar glueball mass that the lattice QCD predicts for the lowest state. We

have found these results are very similar to another approach based on the Regge phenomenology,

where the color factor 9/4 in the linear potential between two gluons plays important roles for

the estimation of the glueball mass and the size. These similarities are quite interesting and the

phenomenological potential picture of the glueball seems to have a close relation with the flux-tube

ring picture.

Here, we shall discuss about the relation between the glueball and the monopole. One may find

that the mχ=1.6 GeV is very similar to the glueball mass that we have obtained above analysis.

The monopole field denotes a complex scalar field and its origin is the off-diagonal gluon field in

the MA-gauge in QCD. Thus, the monopole field would also present the scalar gluonic excitation in

the QCD-vacuum such as the scalar glueball[19]. Therefore, this resemblance of masses seems to be

quite natural, in fact, the phase of the monopole field has played an essential role for the flux-tube

ring solution. It is interesting to note that once this identification is allowed, we can determine

the mass mχ self-consistently. In such a case, the DGL theory which is now including three-

parameters can be rewritten to the two-parameters theory. However, whether the both scalar

glueballs presented by the flux-tube ring or the monopole field are the same or not is another

problem since the flux-tube ring depends not only on the GL-parameter but also on the string

tension. We are now investigating the scalar glueball in terms of the monopole field in the DGL

theory.

Again, we would like to mention that our main idea is the description of the flux-tube ring

solution in the DGL theory as the relativistic closed string with the effective string tension, which

enables us to write the hamiltonian of the flux-tube ring using the NG action. Once the hamiltonian

is obtained, we can discuss the mass spectrum and the wave function of the glueball state. The

boundary condition Φ(R = 0)=0 dictates the ring structure of the color-electric flux to the wave

function. In the future, we should consider the collective motion of the ring and extract the physical

14



glueball state with definite quantum numbers JPC using the angular momentum projection method.

Although such approaches are in progress, we can expect that the DGL theory provides a useful

method for the study of the glueball.
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FIGURE CAPTIONS

FIG.1 : Profiles of the color-electric field Ez(r) (dotted) and the monopole field φ(r) (solid) of

the cylindrical flux-tube in the type-II (κ̃ = 3.0) vacuum as functions of the radial distance from

the center of the flux-tube r, where the parameters are fixed as ĝ = 2.6, λ̂ = 33, v̂ = 0.14 GeV.

FIG.2 : The flux-tube ring system which has rotational invariance along the z-axis. R denotes

the ring radius. All the coordinates used in the text are defined in this figure.

FIG.3 : The profiles of the color-electric field Eθ(r, z) in unit of 1/fm2 of the flux-tube ring

system in the type-II (κ̃ = 3.0) vacuum. The left-hand side denotes the 3D plot and the right-hand

side is its contour plot. The unit of the radial coordinate r and the z-axis is fm. The radius is

taken from 2.0 fm (upper) to 0.5 fm (below) in step of 0.5fm. The color-electric field Eθ decreases

as the ring radius R is reduced.

FIG.4 : The profiles of the monopole field φ(r, z) in unit of 1/fm of the flux-tube ring system

in the type-II (κ̃ = 3.0) vacuum. The left-hand side denotes the 3D plot and the right-hand side

is its contour plot. The unit of the radial coordinate r and the z-axis is fm. The radius is taken

from 2.0 fm (upper) to 0.5 fm (below) in step of 0.5fm. The monopole field φ at the central region

of the ring decreases as the ring radius R is reduced.

FIG.5 : Effective string tension σeff(R) in GeV/fm as a function of the ring radius R. As the

ring radius is reduced, the effective string tension decreases to zero.

FIG.6 : The energy expectation value M1(a) of the flux-tube ring system as a function of

the variational parameter a. The dotted line denotes the case of the constant string tension

σ = 1.0 GeV/fm (for type-II limit), where the energy minimum shows 1.93 GeV at a = 1 as we

have obtained in the analytical way. The solid line is the main result by using the effective string

tension σeff(R) (for κ̃ = 3.0), which shows the energy minimum 1.60 GeV at a = 0.82. The result

a < 1 suggests that the wave function is broad compared with the type-II limit.
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